Can we test effective quantum gravity with gravitational waves?

Nico Yunes

Institute for Gravitation and the Cosmos
Physics Department
The Pennsylvania State University

IGC Conference
August, 2007

S. Alexander and N. Y. “Parameterized post-Newtonian expansion of Chern-Simons gravity”, PRD75, 124022
S. Alexander, S. Finn and N. Y. “An observational probe of effective quantum gravity”, to be submitted soon.
A little motivation

- We would like a consistent unified quantum theory of Nature.
- Symmetry principles are useful to construct gauge theories.
- SM has CP violating interactions (eg, QCD sector), why not in gravity?
- In the absence of full quantum gravity, consider an “effective” theory:

 Effective Theory = GR + “CP-violation”

- Once we have formulated such a theory, can we test it?
 - Solar system effects? Gyroscopic precession. PPN tests.
The Chern-Simons Extension

- In analogy with QCD and inspired by CP violation, let us deform GR:

\[
S = \frac{1}{16\pi G} \int d^4x \left(\sqrt{-g} R + \frac{1}{4} f[\phi] \ast RR \right),
\]

where \(\ast RR = \epsilon^{\mu\nu\alpha\beta} R^\sigma_{\tau\alpha\beta} R^\tau_{\sigma\mu\nu} / 2 \) and \(f[\phi] \) is some functional of some “external” dynamical field \(\phi \) (Jackiw & Pi).

- Varying the action wrt \(g_{\mu\nu} \): \(\delta (f \ast RR) \to \sqrt{-g} C_{\mu\nu} \delta g^{\mu\nu} \) and the EEs become:

\[
G_{\mu\nu} + C_{\mu\nu} = 8\pi T_{\mu\nu}
\]

where \(C_{\mu\nu} \) is the Cotton tensor given by

\[
C_{\mu\nu} \propto \left[f;_{\sigma} \epsilon^{\sigma\alpha\beta}_{(\mu R_{\nu})_{\beta;\alpha}} + f;_{\tau} \ast R^\tau_{(\mu} \sigma_{\nu)} \right]
\]

- Like in QCD, we have now a \textbf{P violating effective theory} with a new scalar field \(\phi \) (the gravitational axion).
Effective Quantum Gravity
Who ordered that?

Quantum theory suggests such a Chern-Simmons extension

- **String Theory:**
 - A Chern-Simmons-like term is needed to cancel a chiral anomaly.
 - Otherwise, string theory would not be a mathematically consistent QFT.
 - If quantum origin, then likely to be suppressed by Planck scale.
 - But some scenarios postulate enhancement of f via coupling to curvature and mass current.

- **Loop Quantum Gravity:**
 - No effective Hamiltonian in the full theory, yet. However, if ST needs it . . .

But the correction need not be quantum inspired!

- There other scenarios where the Chern-Simons correction arises from topological considerations.
Solar System Tests

The ABC of PPN

A) Solve the EOM in your alternative theory.
 - Expand the modified Einstein Equations about a Minkowski background to second order in the metric perturbation (Nordtvedt & Will).
 - Assume a perfect fluid stress-energy source (binaries, Earth-Sun, etc).
 - Assume a slow-motion/weak-gravity approximation and perturbatively solve the linearized EEs: g_{00} to $\mathcal{O}(v^4)$, g_{0i} to $\mathcal{O}(v^3)$ and g_{ij} to $\mathcal{O}(v^2)$.
 - The final solution is then expressed in terms of PPN potentials (Green-function like integrals over the stress energy tensor.)

B) Construct a Super-Duper-Duper Metric
 - Based on some assumptions, construct a family of metric solutions with PPN potentials, with the family labeled by some PPN parameters, eg.

 $$g_{ij} = (1 + 2\gamma U) \delta_{ij}$$

C) Compare solution to new theory to super-metric and read off PPN params.

Has that parameter been measured? → You’ve tested your theory!
Can we test CS in the Solar System?
(Alexander & Yunes)

- When we expand the Cotton tensor in the PPN framework, we find that $C_{00} = \mathcal{O}(v)^6$, C_{ij} leads to $\delta h_{ij} = \mathcal{O}(\dot{f})^2$ and

$$C_{0i} \sim -\frac{1}{4} \dot{f} \varepsilon^{kl} i \nabla^2 h_{0l,k}$$

- The only modification to the gravitational field to leading $\mathcal{O}(\dot{f})$ is then

$$\delta h_{0i} \sim 2 \dot{f} (\nabla \times V)_i$$

where V_i is one of the PPN potentials (lowest-order vector potential).

- New PPN parameter!! (such terms had not been considered before.)

- Specialize to a binary sys. of pt. ptcls. : $V^i \sim m_A v_A^i / r_A - (n_A \times J_A)^i / (2 r_A^2)$

$$g^{(1)}_{0i} = -\frac{7}{2} \frac{m_1}{r_1} v_1^i - \frac{m_1}{6 r_1^2} \left(v_1 - v_1^{(eff)} \right) - \frac{1}{2} n_1 \frac{m_1}{r_1} \left(v_1^{(eff)} \cdot n_1 \right) - 2 \left(\frac{J_1^{(eff)}}{r_1^2} \times n_1 \right)$$

where $v_{A,\text{eff}} = v_A^i - 6 \dot{f} J_A^i / (m_A r_A^2)$ and $J_A^{i(\text{eff})} = J_A^i - \dot{f} m_A v_A^i$

- Axion is a fluid that is “dragged” by motion and couples to ang. mom. \sim Kerr.
Acceleration and Frame-Dragging

- Gravitomagnetic analogy: Construct electromagnetic vectors via

\[E^i = - (\nabla \Phi)^i - \dot{A}^i / 2 \quad \text{and} \quad B^i = (\nabla \times A)^i, \]

where \(A^i \propto g_0 i \). Thus, CS modifies the gravitomagnetic sector of \(ds^2 \).

- Gravitomagnetism affects the acceleration of point particles, namely

\[\delta a^i = \frac{1}{8} \delta g^i + \frac{1}{2} (v \times \delta \Omega)^i = -\frac{3}{2} \dot{f} (v_1 \cdot n_1) (v_1 \times n_1)^i + 1 \rightarrow 2, \]

but for circular orbits the CS correction vanishes (\(v \perp n \)).

- However, CS also affects directly the frame-dragging of gyroscopes, where

\[\delta \Omega^i = - \sum_A \dot{f} \frac{m_A}{r_A^3} \left[3 (v_A \cdot n_A) n_A^i - v_A^i \right]. \]

- Detectable? Smith, Erickcek, Caldwell and Kamionkowski recently expanded our analysis to account for extended objects and found that \(\dot{f} < 10^{-2} \) seconds using LAGEOS.
Gravitational Waves and Birefringence

- Expand the EEs about a FRW background since redshift might enhance effect by accumulation (Alexander & Martin)

$$\Box_g h_L = -i F[f, \ddot{f}] \dot{h}_{L,i} \hat{k}^i \quad \Box_g h_R = +i F[f, \ddot{f}] \dot{h}_{R,i} \hat{k}^i$$

with solution $h_{R,L} = e^{\pm f\tau} h_{R,L}^0 \rightarrow$ the CS correction introduces an exponential growth/decay of the L/R polarization ("movie").

- Pick a binary and then (Alexander, Finn & Yunes):

$$h_+ = \frac{2M}{d_L} (\pi M f)^{2/3} \left[(1 + c_i^2) C_\phi \cosh (f\tau) - 2c_i S_\phi \sinh (f\tau) \right]$$

$$h_\times = \frac{4M}{d_L} (\pi M f)^{2/3} \left[c_i S_\phi \cosh (f\tau) + \frac{1}{2} (1 + c_i^2) C_\phi \sinh (f\tau) \right]$$

where M is the chirp mass, f is the GW frequency, d_L is the luminosity distance $c_i = \cos i$ with i the inclination angle and ϕ the GW phase.

- Can we test CS correction with LISA? Fisher analysis says YES!: $\dot{f} \lesssim 10^{-3}$ secs. (rough estimate, making several assumptions on source and instrument).
Conclusions

• Inspired by CP violation in QCD, one can construct an effective CP-violating gravity theory: Chern-Simons gravity.

• Solar system effects (frame-dragging), studied via weak-field and PPN analysis. Extending Alexander & Yunes, Smith, et al. place bound with LAGEOS at the 1% level.

• Gravitational wave effects difference in polarization amplitude might be detectable by LISA if $\delta \phi$ is large enough. Possible bounds might be one or two orders of magnitude larger than Solar system ones.

Future Work

• How large can f be? Possible enhancements via coupling with neutron currents and regions of high curvature.

• Can we do better with LISA by performing a more detailed Fisher analysis?

• Are there other Solar System effects?
...and, obviously, $G_{ab} = T_{ab}$...

...you can now ask Nico some questions...

THANKS